The Complexity of the Cutting Plane Method

نویسندگان

  • Karthekeyan Chandrasekaran
  • Santosh Vempala
چکیده

The cutting plane method solves a linear relaxation of the problem obtained by dropping the integrality constraint. Given an integer programming problem, it proceeds as follows: If the optimum solution found is not integral, then a cut inequality separating the optimum from all integer solutions is added to the LP and the LP is solved again; this two-step procedure is repeated till an integral solution is reached. Gomory showed that cuts of the form

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of two integration schemes for a micropolar plasticity model

Micropolar plasticity provides the capability to carry out post-failure simulations of geo-structures due to microstructural considerations and embedded length scale in its formulation. An essential part of the numerical implementation of a micropolar plasticity model is the integration of the rate constitutive equations. Efficiency and robustness of the implementation hinge on the type of int...

متن کامل

Acceleration of Lagrangian Method for the Vehicle Routing Problem with Time Windows

The analytic center cutting plane method (ACCPM) is one of successful methods to solve nondifferentiable optimization problems. In this paper ACCPM is used for the first time in the vehicle routing problem with time windows (VRPTW) to accelerate lagrangian relaxation procedure for the problem. At first the basic cutting plane algorithm and its relationship with column generation method is clari...

متن کامل

A Long Step Cutting Plane Algorithm That Uses the Volumetric Barrier

A cutting plane method for linear/convex programming is described. It is based on the volumetric barrier, introduced by Vaidya. The algorithm is a long step one, and has a complexity of O(nL) Newton steps. This is better than the O(n √ mL) complexity of non-cutting plane long step methods based on the volumetric barrier, but it is however worse than Vaidya’s original O(nL) result (which is not ...

متن کامل

Properties of a Cutting Plane Method for Semidefinite Programming

We analyze the properties of an interior point cutting plane algorithm that is based on a semi-infinite linear formulation of the dual semidefinite program. The cutting plane algorithm approximately solves a linear relaxation of the dual semidefinite program in every iteration and relies on a separation oracle that returns linear cutting planes. We show that the complexity of a variant of the i...

متن کامل

Generation of a reduced first - level mixed integer programmimg problem

We introduce a new way of generating cutting planes of a mixed integer programme by way of taking binary variables. Four binary variables are introduced to form quartic inequalities, which results in a reduced first-level mixed integer programme. A new way of weakening the inequalities is presented. An algorithm to carryout the separation of the inequalities, which are exponential in number, is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011